
Journal of Chromatography, 284 (1984) 293-301 
Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands 

CHROM. 16,344 

APPLICABILITY LIMITS OF THE EDGEWORTH-CRAMER SERIES IN 
CHROMATOGRAPHIC PEAK SHAPE ANALYSIS 

FRANCESCO DONDI* and FERNANDO PULIDORI 

Analytical Chemistry Laboratory Department of Chemistry Via L. Borsari 46, I-44100 Ferrara (Italy) 

(Received October 5th, 1983) 

SUMMARY 

A simulation study on the properties of chromatographic peak shape data- 
handling software based on the Edgeworth-Cramer series is described. The least- 
squares approximation properties and the peak parameter bias and precision are 
analysed as a function of peak shape, noise and baseline determination. Applicability 
limits of the method and the maximum useful expansion order are defined. Up to a 
maximum peak skewness (S) value of 0.7, the mean, the standard deviation, the 
skewness and the excess can be determined with a precision interval lower than the 
bias, under normal noise conditions. In the range 0.7 < S < 1 .O, the parameter bias 
is slightly greater than the precision. S values as low as 0.05 can be determined. 
Optimum values of the signal-to-noise ratio are required for measuring the peak 
excess. Peak shapes with S > 1.0 cannot be handled in this way. 

INTRODUCTION 

In previous paperslw3 concerning chromatographic peak shape analysis, the 
validity and the practical usefulness of the Edgeworth-CramCr (EC) series were exam- 
ined. In order to establish the usefulness and define the practical employment of these 
series expansion, three questions must be answered. The first is the greatest peak 
skewness that can be handled. The second is the optimum expansion order to be used 
in fitting a given peak under determined conditions of detector noise. The third con- 
cerns the peak parameter precision and accuracy and their dependence on series 
truncation, signal-to-noise ratio and baseline determination. In fact, the peak param- 
eters that can be determined by these series (mean, standard deviation, skewness, 
excess, higher cumulant coefficients)’ are meaningful physical quantities, related to 
the mass transfer process inside the column and to extra-column band broadening 
phenomena4-8. 

The aim of this work was to clarify the above points with respect to nearly 
symmetrical or moderately skewed peaks, which are often found in chromatographic 
practice. 

The method employed is the classical simulation procedureQ-l l. The principal 
interest is in the accuracy, and much importance is attached here to the difference 
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between the true and computed quantities. A great advantage of the curve fitting 
method is that an estimate of parameter precision is easily obtained. Thus attention 
is devoted to establishing the conditions under which the precision interval covers 
the bias. The essential advantage lies in the fact that, when used under the above 
tested conditions, the method can be considered as an unbiased method of peak 
parameter determination. 

THEORETICAL 

A chromatographic peak Y(t) may be considered a standardized frequency 
function f(x) with normalized unit area: 

f(x) = Y(t) o/A (1) 

where t is the time, o the peak standard deviation, m the peak mean, A the area and 
x the standardized variable: 

+CO 

A= I J’(t) dt (2) 
-CD 

x = (t - m)/a (3) 

The EC series expansion related to f(x) and developed up to the kth order is 

i=k 

J’(X) z Z(X) + C Qd - z) (4) 
i=l 

where Z(x) is the normal frequency function: 

Z(x) = IiJZrr exp( - x2/2) (5) 

and Qi( - Z) are linear aggregates in the derivatives of the normal frequency function 
Z(x), of maximum order 3i, containing cumulant coefficients of f(x). The fist two 
terms are 

Ql(-z, = ’ 4’ (x) 

and 

Qz< -Z) = ; - zf4’ (x) + ; . Z6’ (x) (7) 

(6) 
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where z”) (x) is the ith derivative of the normal frequency function Z(x) with respect 
to x, and S and E are the peak skewness and excess, respectively*g2. 

The general expression, which allows us to compute to the tenth series term, 
is derived in Appendix B in ref. 1. In this paper a theoretical chromatographic peak 
shape arising from the stochastic theoryi2J3 of chromatography is considered: 

f(t) = exp( -L2t - P) (&P/~)‘/~~~W~P 0”’ (8) 

where p is the mean number of adsorption-desorption steps, A2 is the time constant 
on the adsorption site and lr(x) is the modified Bessel function of the first kind. 

COMPUTATIONAL PROCEDURE 

A standard pseudo random Gaussian noise sequence, generated by computer, 
was added to the peak (eqn. 8) and no attempt was made to analyse the effect of the 
noise frequency spectrum or other error sources. A standard range of f lOa with 
respect to the peak mean and only positive time values were considered. The time 
increment was one tenth of the peak standard deviation. Identical results for both 
the minimum position and the peak parameter values were obtained by using dif- 
ferent random noise sequences or denser sampling (up to o/100), as observed in 
handling experimental peaks’. The same general non-linear least-squares minimiza- 
tion procedure, as previously described (MINUIT)‘, was ernployed in fitting these 
peak profiles by EC series expanded up to the seventh order. The unknown peak 
parameters of the series are area A, peak mean m, variance e2, peak skewness S, 
peak excess E and higher cumulant coefficients according to the series expansion 
order k1p2. 

The peak parameter precision was computed on the basis of a 3 Sk increase in 
the minimum total standard deviation’, where Sk is the root mean square error. Base- 
line determination was performed within the same minimization procedure, by con- 
sidering an unknown parameter in the closed interval of f 5 times the standard 
deviation of the random noise added to the peak, centred around the true baseline. 
More extended intervals gave the same results, but with longer computation times. 
All the calculations were run on a CDC Cyber 76 computer (CINECA, Casalecchio, 
Bologna, Italy). 

The signal-to-noise ratio (S/N) is the ratio of the peak maximum to four times 
the standard deviation of the noise sequence. The standard deviations and the areas 
of all the theoretical peaks were the same (d = 10 and A = 10,000). The degree of 
the fitting (approximation error, %) is expressed as the coefficient of variation [C.V. 
(%)] referred to the peak maximum, Y-: 

C.V.(%) = lOOsJY,*, 

RESULTS AND DISCUSSION 

Choice of the model 
The peak shape function employed was derived from the stochastic theory of 

chromatography according to Giddings and Eyringl* and McQuarrie13. 
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Skewness expansion order 

Fig. 1. Skewness vs. excess. The continuous line corresponds to (S/E) values analysed in this work. The 
points refer to experimental peaks taken from the literature: 0, ref. 1; 0, ref. 6; 0, ref. 4; Ir, peak profiles 
kindly supplied by Vidal-Majar and Guiochon”; A, ref. 16. 

Fig. 2. Relative approximation error (C.V., %) as a function of the EC series expansion order and the 
peak skewness. Non-noisy profiles. 

By a convenient choice of model parameters2, peak shapes having the same 
standard deviation (d = IO), but skewness values ranging from 0.03 to 1 .O, have been 
generated. The excess skewness values that can be analysed in this way are reported 
in Fig. 1. In the same graph, (S,E) points referring to experimental gas chromato- 
graphic peaks, taken from various sources and determined by EC series*J4-1a or 
Gram-Charlier series6, are reported for sake of comparison. The low skewness values 
refer to packed and efficient gas-liquid chromatographic columns, and those of high 
skewness to physico-chemical studies by gas-solid chromatography. The type of the- 
oretical peak shapes that were analysed in this work do not seem to differ greatly 
from those in chromatographic practice. 

The bias and reproducibility of the peak shape analysis are functions of ran- 
dom error and of systematic error produced by the instrumentation and the data 
handling software. Interaction effects are possible between random noise and the 
data handling software4, so non-noisy profiles are considered separately. 

Study on non-noisy pro$Ies 
The use of a higher expansion order generally improves the peak approxima- 

tion, as expected. As observed in handling experimental peaks’, the approximation 
degree is equally good on the entire peak and the deviations show an increasing 
number of nodes (change from + to -) by increasing the expansion order of the 
series. In Fig. 2, where the coefficient of variation is reported as a function of the 
expansion order of the EC series, very symmetrical peaks (up to a maximum S value 
of ca. 0.4) are approximated to better than 0.01%. Moderately skewed peaks are 
approximated to a lower precision. Very skewed peaks (S = 0.8-1.0) are approxi- 
mated no more precisely than 0.3-l%. This last fitting level is inferior to a good 
experimental precisionl*6J7. In addition, for the most skewed peak (S = l.O), no 
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TABLE I 

PEAK PARAMETER RECOVERY ERROR (%) ON NON-NOISY PROFILES 

Mean results obtained with EC series expansion orders greater than 2. 

Parameter 

A 

;* 

s 
E 
Higher cumulant 

coefficients 

0.03 < S < 0.6 0.6 < S < 0.75 0.75 c s < 1.0 

co.05 0.3-0.4 0.5 
<0.06 0.3-1.7 0.3-2.5 
10.5 0.41.5 1.5-3.0 
co.5 0.510 l&15 
<15 IO-20 20-30 
>I00 rloo >loo 

* The error (%) is expressed relative to the peak standard deviation. 

improvement is achieved on passing from an expansion order of 5 to 7. This seems 
to be, in effect, the maximum limit of the fitting properties of the EC series, connected 
to the onset of the so-called asymptotic properties2,4.1*-20. 

Surprisingly, we observed that the peak parameter recovery does not always 
improve with the expansion order, but sometimes greater accuracy is observed at 
lower expansion orders (e.g., k = 2 for a’; k = 1 for S; k = 2.4 for E). The expla- 
nation of this findings is difficult, but probably lies in the correlation within the family 
of parameters of the same parity (odd: m, S, . . .; even: 02, E ,... )1,4.14. In Table I, only 
the recovery error ranges as a function of the peak shape are reported. Very low 
systematic errors are observed for the main peak parameters A, m and 02. Very low 
systematic errors are also found in measuring S of nearly Gaussian peaks. The peak 
excess E can be measured but less significantly. Higher cumulant coefficients cannot 
be determined at all. 

Studies on noisy profiles 
The superimposition of a random noise on the peak profile limits the maximum 

fitting precision attainable on expanding the series (Fig. 3). By using the F-test cri- 

10. 100 1000 10,000 
expansion order . S/N 

Fig. 3. Relative approximation error (C.V., %) as a function of the EC series expansion order and the 
signal-to-noise ratio. *, Non-noisy profile. Peak skewness: 0.3. 

Fig. 4. Maximum expansion order of the best fitting EC series as a function of the signal-to-noise ratio 
and the peak shape. 
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TABLE II 

PEAK PARAMETER RECOVERY ERROR (%) ON NOISY PROFILES 

Parameter S/N = 100 SIN. 1000 

0.03 < s -c 0.7 0.7 < s < 1.0 0.03 < s < 0.7 0.7 c s < 1.0 

A 0.2 0.24.8 0.05 0.247 
5 0.3 0.3 0.41.0 0.s3.0 0.1 0.2 0.5-3.0 0.347 

S >l 2 -5 1-1.5 1 -3 
E 40-5.0 10 -5.0 10-2.0 5 
Baseline* 0.05 0.054 1 0.0025 0.025 

l The error (%) is expressed relative to the peak standard deviation. 
* The relative error is referred to the peak maximum. 

terion, the maximum expansion order, k mx, as a function of S/N can be determined 
for each peak shape*. Thus Fig. 4 was built up, in which each line refers to a given 
peak skewness and the dotted area delimits the usual S/N values found when working 
with a flame-ionization detector I’. Only for intermediate peak skewness values is a 
strong dependence between k,,,,, and S/N observed. Working conditions correspond- 
ing to the left-hand side of the dotted area signify bad experimental conditions, with 
a great loss of information on the peak properties. An increase in S/N beyond 1000 
does not always mean a significant improvement in k,,,. 

By extrapolating the pattern shown in Fig. 4, some inferences can be made as 
to the need for higher expansion orders beyond seven, which is the maximum ex- 
pansion order employed here. 

An increase in k,,, beyond 7 is expected to be significant only for high skew- 
ness values (0.8-l.O), when S/N has an optimum value (cu. 500)6. However, for this 
peak skewness the asymptotic limits of the EC series begin to appear, as discussed 
above. By increasing the expansion order by one unit, the natural consequence is 
that the attainable improvements are progessively less significant. Thus it can be 
concluded that the seventh EC expansion order seems to be sufficient for chromato- 
graphic applications, at least for low peak skewnesses. 

The results in Figs. 3 and 4 refer to noisy profiles with the exact baseline. 
However, nearly identical results with only minor changes (kmar f 1 in Fig. 4) are 
obtained by considering the baseline as an additional unknown parameter. Below, 
where the peak parameter determination is discussed, only results obtained by con- 
sidering the baseline as an unknown are reported. In addition, among the possible 
sets of peak parameters, we consider only the set resulting from the best fitting, that 
is, that which is obtained with an expansion order equal to k,,,. In Table II the 
parameter recovery errors are reported as relative percentages. At low peak skewness 
values (0.03 < S < 0.7), the relative accuracy is good and nearly constant. For 0.7 
< S < 1.0, a general increase in the systematic error is observed. Improvements in 
S/N almost always results in better accuracy. For the last parameter, E, a greater 
improvement in accuracy is observed on increasing S/N. Thus, if a detailed descrip- 
tion of the peak shape is required and E is also to be determined, S/N must be 
adjusted to its highest level. 
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TABLE III 

PEAK PARAMETER PRECISION CALCULATED ON THE 4 INCREASE OF THE MINIMUM 
OF THE SQUARED DEVIATIONS (NOISY PROFILES) (MEAN QUANTITIES) 

Parameter S/N = 100 S/N = loo0 

A 
m* 
u* 

g 
Baseline- 

&0.2% f 0.05% 
f0.4% ztO.I% 
f 1.5% f 0.25% 
jzo.01 f 0.0025 
*0.015 f 0.005 
f 0.05% f 0.025% 

l The error (X) is expressed relative to the peak standard deviation. The common peak standard 
deviation is 10. 

* The errors on these quantities are expressed as absolute errors. 
*f* The relative error is referred to the peak maximum. 

Let us consider now the peak parameter precision (Table III). As a general 
rule, the parameter precision intervals were found to be nearly independent of the 
actual parameter values and thus of the peak shape, the major dependence being 
once again on S/N. 

By comparing the peak precision with the accuracy (Tables II and III), it ap- 
pears that when the peak is moderately skewed (0.03 < S < 0.7), the dominant 
effect is the precision. In this instance the precision interval covers the true value of 
the quantity. Instead, when the peak skewness is high (0.7 < S c l.O), the dominant 
effect is the accuracy, and thus the precision interval can result in an underestimate 
of the bias (make use of Fig. 1 to calculate the relative error on S and E). 

TABLE IV 

COMPARISON BETWEEN PARAMETER PRECISION DETERMINED ON THEORETICAL AND EXPER- 
IMENTAL PEAKS BY EC SERIES 

Signal-to-noise ratio = 100. Results are relative errors (%). 

Low-skewness peaks High-skewness peaks 

Theoretical Experimental Theoretical Experimental. 
peak shape peak shape peak shape peak shape 
(S = 0.3; E = 0.12) (S = 0.27; E = 0.32) (S = 0.89; E = 1.03) (S = 0.95; E = 1.58) 

KM% 
A 

;* 

S 
E 
Baseline* 
Approx. error (%) 

4 3 5 6 
0.20 0.16 0.38 1.2 
0.4 0.3 0.4 1.0 
0.53 0.77 1.5 3.1 
4.9 7.7 2.7 4.2 

24 11 6.6 3.8 
0.067 0.025 0.09 0.03 
0.25 0.14 0.31 0.50 

l The error (%) is expressed relative to the peak standard deviation. 
** The relative error is referred to the peak maximum. 
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Comparison with experimental peaks 
Two peaks, recorded as described in ref. 1, were used. They were derived from 

cases I and III discussed in ref. 1, but the baseline was treated as an additional 
unknown. No repeated peaks (by using the same sample) were considered, as it has 
been shown’ that repeatability is the same as the precision computed on the 3 Sk basis 
using a single peak. 

The results are given in Table IV. Excellent agreement is observed between the 
precision measured on experimental and theoretical peaks, the k,,, employed and 
the degree of fitting attained, at comparable levels of peak skewness. 

CONCLUSIONS 

The present data handling software appears to be superior to other peak treat- 
ments based on different peak shape functions1;6.211,22 or on the integration 
methodgJ1.23, provided that the peak skewness is not greater than 1.0. In fact, the 
present method is valuable both in peak fittings and in peak parameter determina- 
tions. Previous methods fail in one or other of these aims6. For skewness values 
higher than 1.0, the limits inherent in the asymptotic properties of this series call for 
new peak shape functions4*20 or different data handling methods. 

The conclusions on the validity of the EC series can, however, be applied 
chiefly to those asymmetry effects which are observed under conditions of infinite 
dilution and classified as site heterogeneity, mixed retention, poorly packed columns 
or slow retention kinetics24-26. In fact, both the peak shape function and the ap- 
proximation function employed in this work come from the stochastic theory of the 
sums of random and independent variables. In chromatographic terms, they describe 
the trajectories of the solute molecule through the column only when they behave 
independently of each other 12J3Jg. Care must be taken, instead, in dealing with the 
concentration-dependent asymmetry effects, which are known to be another impor- 
tant source of peak asymmetry in chromatography2’. 
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